STATISTICS IN FOCUS Population and social conditions

eurostat
$1997 \square 7$

ISSN 1024-4352

Beyond the predictable: demographic changes in the EU up to 2050

Abstract

The European Union has had a number of demographic surprises over the last 30 years. Fertility levels have dropped dramatically, life expectancy has continued to increase strongly and most Member States of the EU have become immigration countries. Consequently, the number of young people has declined significantly (by around 20\%), whereas both those of working age and the elderly continued to grow in number.

What might happen in the next 50 years? Will the EU soon be confronted with a shrinking working age population? Will the under-20s be outnumbered by the over-60s? What can we say about the future demographic differences between EU countries?

These and other questions are answered in this bulletin. Based upon five different but internationally consistent long-term population scenarios, a dozen principal future demographic trends are presented. A summary table concerning the key-assumptions of the scenarios can be found in the middle of this publication; a brief technical explanation is given at the end.

The EU's share in world population will continue to diminish

With its 373 million inhabitants on 1 January 1996, the European Union is the third largest world demographic power after China (1.204 billion) and India (944 million). It is ahead of the United States (264 million).

However, the EU's share in world population is diminishing. In 1950 the EU embraced almost 12% of mankind. Currently that figure is less than 7%, and if current fertility, mortality and international migration trends persist (baseline scenario), by the year 2050 no more than 4% will live in the EU (Figure 1). Even if fertility recovers and net migration returns to somewhat higher levels than actually observed (high scenario), this proportion will further decline.

Figure 1
EU population as a \% of total world population

[^0]
Towards a shrinking population?

Figure 2 demonstrates that sooner or later total EU population will stagnate and decline. According to the low scenario, 'depopulation' will already occur within ten years, and by the year 2050 the total number of inhabitants will be very close to that observed in 1950.

The baseline scenario expects a population to peak around 2025, and a total population in 2050 close to the current one. Only the high scenario foresees a continuous increase over the next five decades, resulting in an EU population of 444 million in 2050 . This is 20% more than the current population.

Within the Union, future population growth will be far from uniform. According to the baseline scenario, Italy will be already confronted with a population decline within 12 years, whilst both Luxembourg and Sweden will escape this experience (Figure 3).

Figure 2
Total population - EUR 15

Figure 3
First calendar year of population decline - baseline scenario

Table 1
Population at 1 January

	$\frac{1905}{\text { OBSERVEO }}$	2000			2020			2050		
		LOW	BASELINE	HIGH	LOW	BASELINE	HIGH	LOW	BASELINE	HIGH
	(1000)									
EUR 15	571575	373 209	376951	380545	363785	389.222	416382	303475	367.127	444882
Beigium	101315278	10.931	10.252	103325365	0888	10658	11.270	8378	10.488	12142
Denmark		\& 271	5421		6075	55.5	5280	4296	5542	6675
Giermany	$\begin{array}{r}5278 \\ \hline 1520\end{array}$	62.23	33: 23	84013	79374	84870	81 859	03420	7750	94885
creoce	15443	10535	10.643	10720	10.460	112019	11900	9050	19248	12978
Spain	32157	令 C 碞	\$3 5is	39 945	37809	©2307	43504	$30<51$	35738	45120
France	58000	53 615	58179	59710	59307	68835	66896	52349	62563	73940
Incisnid	3510	$15 / 4$	3625	3661	3652	3909	4248	3096	3818	4756
"aty	57269	56.911	57483	57597	52783	6554.3	60234	40457	49287	59538
Lurembioun	497	420	438	4 ± 5	ces	505	555	S\%8	563	714
Netheriands	15424	15 ten	15. 0 ¢	15 582	15819	17204	18319	-3747	17564	20719
Ausina	\% 040	- 0 ¢076	8145	8234	7882	84.3	¢ 231	6630	E24	10.340
Portugal	7912	9911	8993	10085	9808	10513	11205	8892	10589	22621
Finiand	5090ence	5125	5:78	5231	5.503	5380	5.777	C 178	5078	6210
Swosen			8932	9034	8789	9470	10.248	7954	16.588	72210
Unsed Kangdem	58504	So 8 ms	50260	89785	58.013	65088	65325	50430	593.5	7196
Iontand	267	276	278	279	294	311	320	280	$31:$	352
Luctispnsino	31	31	32	32	32	75	38	26	33	42
Norway	4348	4427	4462	4495	4494	4831	5186	C $0 \% 5$	5161	6053
EEA	376221	$3785 \% 9$	38:733	385331	368605	328423	421982	307855	373234	451290

Deaths will outnumber births

The principal reason why the EU population will start to decline is the 'births deficit' of postwar generations. People born after 1945 have or are expected to have too few children to replace themselves. Therefore, sooner or later the number of deaths will start to exceed the number of live births (Figure 4).

If fertility levels continue to decrease (low scenario), this demographic break-even point will already have been reached in 1997. If fertility recovers considerably, to levels of about 1.95 children per woman (high scenario), natural population loss will not appear in the next 3-4 decades.

Several EU countries have already experienced natural decrease. Germany has been confronted with such a situation continuously since 1972. Currently Italy, too, is iosing population through natural decrease.
In the short and medium term all the southern Member States will probably follow, as will Austria and Denmark. In the long run all other EU countries will face natural population decline.

Figure 4 Live births minus deaths - EUR 15

Migration will continue to play a rnajor role

Since the mid-1980s international migration has rapidly gained importance as a component of population growth. During the period 1990-1994, net migration (immigrants less emigrants) to the EU amounted to well over 5 million people. The contribution of migration to population growth rose to around 70%.
In all scenarios it is expected that Europe will remain an attractive region for immigrants. Basically depending on economic developments and migration policies, net migration will in the medium and long run vary between 400 and 800 thousand persons a year (Figure 5),
Due to diminishing economic disparities and the introduction of some kind of burden sharing for asylum seekers, the southern Member States will probably get a larger proportion of the total inflow. However, Germany will continue to be the most popular immigration country (Table 3).

Figure 5
Net migration ${ }^{1}$ - EUR 15

BASELINE LOW HIGH
${ }^{1}$ For the period 1950-1994 calculated as total population growth minus live births plus deaths

Decline in total fertility will stop

During the last 30 years the EU reproductive patterns changed considerably. A fast and still-growing proportion of women had few children and postponed motherhood. As a result the total fertility rate, which is affected by both the number and timing of births, has declined sharply to historically low levels of around 1.45 children per woman (Figure 6).
This trend will soon come to an end. If the vast majority of women born during the 1960 s and 1970s are able to realise their family ambitions and therefore catch up rapidly with postponed births (high scenario), the total fertility rate could rapidly rise to levels very close to the observed average family size of women born in the early 1950s: 1.95 children per woman.

If these generations never catch up, and consequently around 30% of the women remain childless (low scenario), the total fertility rate will hardly change at all.

In all scenarios it is assumed that current international fertility differences will persist. Therefore, in the long run the highest total fertility rates are expected in Finland, France, Ireland, Sweden and United Kingdom, and the lowest in Germany, Italy and Spain (Table 3).

Life expectancy will continue to increase; gender gap might diminish somewhat

Since 1945 life expectancy at birth in the EU has increased almost continuously. The total gain amounts to well over 10 years. Based on the recently observed mortality rates, women and men are expected to live on average 80 and 73.5 years respectively (Figure 7).

During the next 50 years a further fairly substantial increase in longevity might occur. If medicines, preventive and curative health services, healthy life-styles, etc. continue to improve (high scenario), life expectancy at birth for women might reach around 87 years in 2050. For men maximum levels of around 83 years seem plausible, so that the gender gap might diminish somewhat.

However, if the further development of positive influences on mortality slows down shortly and is increasingly counteracted by negative influences such as cigarettesmoking and stress, progress in life expectancy could start to stagnate and the gender gap would then not narrow (low scenario).

Current differences between countries in life expectancies are assumed to remain stable (low scenario) or to narrow somewhat (baseline and high scenarios). So, Sweden and France (females only) continue to be the EU countries with the highest life expectancies, whereas the lowest levels are expected in Denmark, Ireland, Portugal and Finland (males only) (Table 3).

Figure 6
Total fertility rate - EUR 15

Figure 7
Life expectancy at birth - EUR 15

Fewer young people?

During the period 1975-1995 the number of people aged under 20 within the EU dropped from 110 million to 90 million (Figure 8)

If current low fertility levels persist, a further reduction will take place. In this case, in 2050 the Union will comprise no more than 52 million young people. However, if fertility catches up strongly, the number of young people in the EU could steadily rise to a level of almost 100 million in 2020.

The share of the young in the total population, currently 24%. will certainly continue to decline up to the year 2000 (Table 2). Thereafter, this process of 'dejuvenation'

Figure 8
Population aged under 20 - EUR 15

might stop. By 2050 the proportion of young people could lie between 16 and 24%.

According to the baseline scenario almost all EU countries will lose young people during the period 1995-2020 (Figure 9). Ireland in particular will be confronted with a steep decline. Luxembourg. on the other hand, seems to escape any further decline.

The Irish population is currently by far the youngest of the Union (34%). whereas Germany and Italy are the most dejuvenated countries (21%). In the coming decades this difference will certainly diminish. By the year 2050. Finland, Ireland and Sweden could be the youngest countries ($18-26 \%$), and Italy and Spain the most dejuvenated (14-22\%).

Figure 9
Population aged under 20: change 1995-2020 (\%)

Table 2
Population aged under 20 as a \% of total population

	$\frac{1995}{\text { OBSERVED }}$	2000			2020			2050		
		010	BASELINE	YOUNG	OLD	BASELINE	YOUNG	OLD	BASELINE	roung
EUR 15	239	228	23.	235	13	21	24	16	19	24
Eopurn	24.	23.3	23.7	240	\because	22	24	16	21	25
Dermerk	236	233	238	24 :	+1)	22	25	17	22	25
Gertasty	29.6	292	21.8	220	4	19	2	14	58	23
Oroect	24.4	22.9	225	$22 ?$	18	22	24	15	20	23
Soun	250	29.6	219	22.4	17	20	24	14	58	22
Finse	26 !	251	254	88	25	23	20	17	21	28
liciang	33.9	357	310	312	23	25	29	18	21	20
ialy	21.5	136	200	205	$\cdot 5$	-9	22	4	97	22
Luveniboung	238	24.	208	252	17	22	25	: 7	22	20
Neprormas	224	239	244	246	\because	22	24	17	21	25
Aushar	333	22.7	73.	235	97	30	23	15	-9	3
Posupa	26 :	23.2	236	239	20	22	25	15	21	24
Fricio	255	246	249	252	20	22	25	18	21	26
Swtoen	$2: 7$	244	247	$25 .$	25	23	25	18	22	16
Uned kngosm	253	25.	25.4	258	29	22	25	17	21	20
terens	32.4	355	30.9	$3: 0$	22	26	28	97	$\overline{\text { E }}$	24
Uectiensmon	25.4	24.1	245	250	17	20	23	14	18	23
Nernusy	25 \%	25.5	25.9	20.2	20	23	25	10	22	25
EEA	239	228	23.	23.6	18	2.	24	36	19	24

Table 3: Key-assumptions used for long-term population scenarios

	EUR15	B	DK	D	EL	E	F	IRL	I	L
Total fertility rate										
LOW/OLD										
1995	1.41	1.51	1.72	1.24	1.34	1.22	1.64	1.86	1.18	1.67
2000	1.40	1.46	1.55	1.26	1.36	1.22	1.62	1.67	1.20	1.55
2020	1.43	1.50	1.50	1.30	1.40	1.28	1.55	1.60	1.27	1.50
2050	1.45	1.50	1.50	1.30	1.40	1.30	1.60	1.60	1.30	1.50
BASELINE										
1995	1.45	1.57	1.79	1.28	1.40	1.24	1.66	1.90	1.22	1.71
2000	1.55	1.67	1.77	1.41	1.59	1.36	1.73	1.83	1.37	1.72
2020	1.65	1.80	1.79	1.50	1.70	1.50	1.80	1.79	1.50	1.79
2050	1.66	1.80	1.80	1.50	1.70	1.50	1.80	1.80	1.50	1.80
high/young										
1995	1.50	1.60	1.82	1.33	1.43	1.30	1.72	1.94	1.27	1.74
2000	1.75	1.81	1.94	1.62	1.72	1.59	1.97	2.02	1.58	1.89
2020	1.94	2.00	2.00	1.80	1.90	1.80	2.10	2.10	1.80	2.00
2050	1.94	2.00	2.00	1.80	1.90	1.80	2.10	2.10	1.80	2.00

Life expectancy at birth, males
Lownoung

1995	73.5	73.3	72.6	72.9	75.0	73.6	73.6	72.7	74.2	72.6
2000	73.9	74.0	72.9	73.3	75.5	73.6	74.0	73.2	74.3	73.6
2020	75.3	75.5	74.0	74.7	76.8	74.5	75.6	74.5	75.6	75.2
2050	75.8	76.0	75.0	75.0	77.5	75.5	76.0	75.0	76.0	75.5
baseline										
1995	73.9	73.6	72.9	73.4	75.3	74.0	74.0	73.0	74.8	72.9
2000	74.7	74.8	73.7	74.1	76.3	74.4	74.8	74.0	75.1	74.4
2020	77.8	78.7	77.1	77.4	79.4	76.7	78.3	77.2	78.3	78.8
2050	79.7	80.0	79.0	79.0	81.0	79.0	80.0	79.0	80.0	80.0
highold										
1995	74.3	73.9	73.3	73.7	75.6	74.5	74.3	73.4	75.1	73.2
2000	75.5	75.6	74.6	75.0	77.0	75.3	75.6	74.9	75.9	75.3
2020	80.2	80.8	79.5	79.8	81.8	79.8	80.3	79.6	80.4	80.7
2050	82.7	83.0	82.0	82.0	84.0	82.0	83.0	82.0	83.0	83.0

Life expectancy at birth, females
Lowroung

1995	80.1	80.0	77.8	79.4	80.0	81.1	81.6	78.3	80.9	79.2
2000	80.5	80.7	77.9	79.8	80.5	81.2	82.2	78.8	81.1	79.7
2020	81.7	81.7	78.6	81.1	81.7	82.2	83.6	80.0	82.1	81.0
2050	82.2	82.0	79.5	81.5	82.0	82.5	84.0	80.5	82.5	81.5
baseline										
1995	80.4	80.2	78.0	79.7	80.2	81.4	81.9	78.5	81.3	79.4
2000	81.1	81.3	78.5	80.4	81.1	81.8	82.8	79.4	81.7	80.3
2020	83.6	84.2	80.8	82.9	83.6	84.0	85.4	82.3	84.0	83.4
2050	85.1	85.0	83.0	84.0	85.0	85.0	87.0	84.0	85.0	85.0
HIGH/OLD										
1995	80.7	80.4	78.3	80.0	80.4	81.7	82.2	78.8	81.5	79.7
2000	81.7	81.9	79.3	81.1	81.7	82.3	83.2	80.2	82.2	81.0
2020	85.1	85.7	83.1	84.4	85.1	85.4	86.6	84.1	85.4	85.3
2050	86.9	87.0	85.0	86.0	87.0	87.0	88.0	86.0	87.0	87.0

Net migration (1000)
LOWIOLD

1995	647.1	15.0	27.6	390.0	25.0	18.3	40.0	-10.0	20.0	4.1
2000	410.8	5.9	6.0	300.0	13.8	4.9	20.4	-10.0	20.0	2.0
2020	396.0	10.0	5.0	150.0	20.0	40.0	30.0	-5.0	60.0	1.0
2050	396.0	10.0	5.0	150.0	20.0	40.0	30.0	-5.0	60.0	1.0
BASELINE										
1995	761.7	18.0	28.6	420.0	30.0	28.5	50.0	-8.4	50.0	4.6
2000	679.3	10.2	11.0	390.6	21.7	31.1	50.1	-7.7	50.0	3.1
2020	591.8	15.0	10.0	200.0	25.0	60.0	50.0	-2.7	80.0	2.0
2050	591.8	15.0	10.0	200.0	25.0	60.0	50.0	-2.7	80.0	2.0
HIGH/YOUNG										
1995	869.7	21.0	29.6	450.0	35.0	38.7	60.0	-6.8	80.0	5.1
2000	1009.9	18.0	16.0	500.0	29.5	57.2	79.8	-3.4	80.0	4.3
2020	787.6	20.0	15.0	250.0	30.0	80.0	70.0	-0.4	100.0	3.0
2050	787.6	20.0	15.0	250.0	30.0	80.0	70.0	-0.4	100.0	3.0

Total fertility rate

1.52	1.36	1.40	1.80	1.70	1.68	2.07	1.36	1.82
1.47	1.34	1.38	1.68	1.63	1.59	1.87	1.34	1.65
1.50	1.37	1.40	1.60	1.60	1.60	1.80	1.37	1.60
1.50	1.40	1.40	1.60	1.60	1.60	1.80	1.40	1.60
					1.84	1.74	1.73	2.12
1.58	1.39	1.45	1.39	1.85				
1.67	1.52	1.53	1.84	1.81	1.72	2.08	1.52	1.85
1.80	1.60	1.69	1.80	1.90	1.79	2.08	1.60	1.89
1.80	1.60	1.70	1.80	1.90	1.80	2.10	1.60	1.90
1.59	1.44	1.48	1.89	1.78	1.77	2.15	1.44	1.90
1.74	1.71	1.67	2.03	1.98	1.94	2.24	1.71	1.96
1.99	1.90	1.90	2.10	2.10	2.10	2.30	1.90	2.09
2.00	1.90	1.90	2.10	2.10	2.10	2.30	1.90	2.10

1.42
1.40
1.43
1.45
1.46
1.55
1.66
1.67

1.50
1.75
1.94
1.95

LOW/OLD

Life expectancy at birth, males
LOW/YOUNG

74.4	73.2	70.7	72.0	75.6	73.7	76.0	74.9	74.4
74.7	73.7	71.1	72.5	76.2	74.4	76.5	75.2	75.0
75.7	75.2	72.3	74.0	77.7	76.0	77.9	76.3	76.4

76.5	75.5	73.0	74.5	78.0

74.6	73.6	71.0	72.3	75.9	74.1	76.4	75.2	74.7
75.5	74.5	71.9	73.3	77.0	75.2	77.3	76.0	75.8
78.2	76.6	75.3	76.6	78.9	78.3	80.2	78.7	79.0

80.0	80.0	78.0	79.0	82.0

74.9	74.0	71.4	72.7	76.4	74.5	76.7	75.5	75.0
76.3	75.3	72.9	74.3	77.6	76.0	77.9	76.7	76.5
80.8	80.3	78.5	79.5	80.4	80.4	82.4	81.6	81.3
83.0	83.0	82.0	82.0	85.0	83.0	85.0	84.0	84.0

Life expectancy at birth, females
LOW/YOUNG

80.3	79.6	78.0	79.6	80.8	79.2	81.6	81.5	80.3
80.5	80.1	78.4	80.1	81.2	79.7	82.5	81.9	80.7
81.3	81.2	79.6	81.2	82.5	81.0	83.8	83.1	81.7
82.0	81.5	80.0	81.5	83.0	81.5	84.0	83.5	82.0
80.5	79.9	78.2	79.8	81.3	79.5	81.9	81.7	80.6
81.1	80.7	79.0	80.7	81.8	80.3	83.1	82.5	81.3
83.3	82.4	81.9	83.3	83.4	83.2	86.0	84.8	83.6
85.0	85.0	84.0	85.0	86.0	85.0	87.0	86.0	85.0
80.7	80.2	78.5	80.1	81.5	79.8	82.1	81.9	80.8
81.7	81.4	79.8	81.4	82.3	81.0	83.5	82.9	81.8
84.9	84.9	83.5	85.1	86.3	84.6	87.1	87.0	85.9
87.0	87.0	86.0	87.0	88.0	87.0	88.0	88.0	87.0

80.1
80.5
81.7
82.2
80.4
81.1
83.6
85.1
80.7
81.7
85.1
86.9

1995
2000
2020
2050
BASELINE
1995
2000
2020
2050
HIGH/OLD
1995
2000
2020
2050

Net migration (1000)
LOW/OLD

13.0	12.1	4.5	3.0	11.5	73.0	-1.3	0.0	6.5	652.4	1995
10.0	9.9	5.8	-0.5	6.3	16.2	0.0	0.0	4.0	414.8	2000
20.0	15.0	20.0	0.0	10.0	20.0	0.0	0.0	4.0	400.0	2020
20.0	15.0	20.0	0.0	10.0	20.0	0.0	0.0	4.0	400.0	2050
										BASELINE
13.5	13.3	5.0	3.5	12.0	93.0	-1.4	0.1	7.0	767.3	1995
33.4	14.8	12.1	5.6	15.2	38.3	0.1	0.1	8.4	687.9	2000
35.0	22.5	25.0	5.0	20.0	45.0	0.2	0.1	8.0	600.0	2020
35.0	22.5	25.0	5.0	20.0	45.0	0.2	0.1	8.0	600.0	2050
										HIGH/YOUNG
14.0	17.2	5.5	4.0	13.5	103.0	-1.5	0.1	7.5	875.9	1995
56.8	26.4	28.6	11.7	32.0	73.0	0.2	0.1	12.9	1023.2	2000
50.0	30.0	30.0	10.0	30.0	70.0	0.3	0.1	12.0	800.0	2020
50.0	30.0	30.0	10.0	30.0	70.0	0.3	0.1	12.0	800.0	2050

The working age population will sooner or later decline

For decades the Union possessed a strongly increasing working age population (Figure 10). Since the mid 1970's average growth has amounted almost 1.5 million people a year.

In the near future this growth will slow down. Heavily depending on the net inflow of migrants, the average annual increase will drop to levels between 0.2 and 0.6 million people.

Figure 10
Population aged 20-59 - EUR 15

Immediately after 2005, when the first, large postwar 'baby-boom' generations are leaving the working-age population, a fairly long period of decline will start. A stabilisation may take place around 2035, but only if fertility recovers structurally and net migration continues at rather high levels.
Within the Union probably all countries except Luxembourg will sooner or later be affected by this new demographic trend (Figure 11). Italy in particular might very soon be confronted with a sharply declining potential labour force.

Figure 11
Population aged 20-59: change 1995-2020 (\%)

Table 4
Population aged 20-59 years

	1995	2000			2020			2050		
	OBSEAVED	LOW	BASELINE	HIGH	Low	BASELINE	HIGH	LOW	BASELINE	HIGH
	(1000)									
EUR 15	206170	208123	206813	209504	197443	253550	210383	145747	172425	$2: 6357$
Belgum	5533	5577	5583	5659	5269	5430	5592	4035	4950	5670
Denmisk:	2949	3003	3011	3020	2764	2 895	3015	2206	2700	3267
Gormatr	47.113	46.249	464.37	46650	4) $5 \pi 7$	45210	47065	30958	36734	44538
crimen	5645	5735	5.813	51435	3, ens	5818	5973	4297	524.4	3900
Scoun	21350	22518	22394	2248 !	2: 115	(2) 716	22450	19857	16597	20019
France	31246	31942	$32 \mathrm{cos}$	2121	3.163	$\text { 3) } 847$	32703	2476	29 7.7	340%
Ireand	1318	1920	T 808	1957	2002	2091	2174	1402	1786	2203
litaly	32253	32.193	32.290	22028	23.41	29444	30.263	18.877	72485	26.951
Lexpmitourg	232	240	253	245	253	288	288	257	272	352
Netrosencts	(1337	9006	P112	9128	3×42	8. P 88	9362	6. 812	a 2 1e	2829
Austra	4378	4618	4685	4651	4418	457	4313	3235	3789	4829
Pont-gal	5356	5301	5.670	5060	5182	5646	5956	4.207	$5: 27$	5922
Finiand	2016	28083	2875	$2 \mathrm{BA}$	2578	2 701	2752	2081	24.44	2950
Smpden	6807	4750	4765	4797	+ 579	4789	5069	3949	4215	5071
Uniond Kingdom	31690	32023	32115	32197	31450	12131	30040	24842	24.230	30674
loeand	140	148	143	148	153	156	157	18	736	. 52
Lesherdson	18	:9	19	19	17	18	20	11	15	80
Nocray	2357	2536	2445	2453	2419	2,520	2814	2640	2507	2.893
EEA	208686	210.786	211425	212168	200603	256244	213173	147916	175483	$20042:$

Ageing will accelerate

Apart from a short period of stagnation at the end of the 1970 s, the EU population aged 60 and over has increased continuously since 1950 (Figure 12). Currently the annual growth of the elderly population fluctuates around a level of 0.8 million persons, or 1%.
Up to 2005 this growth rate will hardly change. However, as soon as the 'baby-boomers' start to enter this age group, the annual increase will shift to levels of around 1.1 million people. This will remain the case until the less numerous 'baby-bust' generations born in the early 1970 s pass the age of 60 .

Figure 12
Population aged 60 and over - EUR 15

The ever-increasing share of the elderly in the total EU population will also accelerate during the period 20052030. From 21% now and 22% in 2005 , it is expected to rise to a level of around 27% in the year 2020 (Table 5). By 2050 the proportion might lie between 27-40\%.

In all EU countries the number of old people will increase considerably (Figure 13). Particularly in the currently least aged Member States of the Union, Finland, Ireland, Luxembourg and Netherlands, the elderly population will grow rapidly. However, by 2050 Italy and Spain are expected to be the most aged EU countries ($30-44 \%$).

Figure 13
Population aged 60 and over: increase 1995-2020 (\%)

Table 5
Population aged 60 and over as a \% of total population

	$\frac{1995}{\text { OBSERVED }}$	2000			2020			2050		
		YOUNG	BASELINE	OLO	YOUNG	BASELINE	OLD	YOUNG	BASELINE	OLO
EUR 15	20.6	212	215	219	25	27	29	27	34	40
Belgum	21.3	216	2,8	229	25	28	30	25	32	33
Denmark	199	19.4	196	19.9	23	26	28	23	29	35
Germany	207	22.2	22.6	829	25	28	35	27	34	85
Greose	215	227	22.9	232	25	27	29	23	33	85
Span	20.6	212	21,5	2:3	24	26	28	30	37	4
Franse	200	202	20.5	207	25	27	29	26	33	33
freland	963	15.3	156	158	12	22	24	25	82	39
lialy	222	23.4	238	240	27	29	32	32	37	S4
Luxembourg	191	189	192	195	22	25	28	23	29	35
Notheriands	177	180	182	185	24	26	29	25	32	37
Austra	198	195	291	204	23	26	28	25	33	45
Portugal	198	20.3	20.5	209	22	24	25	25	35	38
Finising	189	195	19 ?	198	26	28	39	25	35	35
Swedos	221	215	21.9	22.2	25	27	29	24	29	35
United Kongtom	205	202	205	20.7	23	26	27	25	32	37
Iceland	15.0	159	160	160	25	26	27	30	56	41
Liecntonsten	149	152	155	158	24	27	S0	28	S6	4.4
Now故	20.4	49.	493	19.6	23	25	27	23	49	98
EEA	20.6	21.2	215	218	24	27	29	27	34	45

Both the working age and the elderly population will become older

During the next 20 years the age structure of the EU population aged $20-59$ will change dramatically (Figure 14). At present about 45% of the working age population is more than 40 years old. By 2015 this proportion will reach levels of around 55%. Naturally, this trend is mainly due to the ageing of the large postwar baby-boom generations.

Figure 14
Population aged 40-59 as a \% of population aged 20-59 - EUR 15

After 2015 the ageing of the potential labour force will stagnate and probably even reverse as the less numerous generations born in the 1970s are reaching the age of 40 , while the baby-boomers are leaving the workingage population.
Also the EU population aged 60 and over will become older. After the turn of the century the share of the population aged 80 and over in the elderly population will increase almost continuously (Figure 15). Particularly after 2025, when the baby-boomers are passing the age of 80 , the number of the 'very old' will rise dramatically. By the year 2050 their share of the elderly population might be more than one-third.

Figure 15
Population aged 80 and over as a \% of population aged 60 and over - EUR 15

All Member States will sooner or later experience these more specific ageing trends. Particularly Italy. Portugal and Spain might be confronted with a relatively long period of an ageing potential labour force, whereas Denmark, Finland and Sweden are already in the middle of this process. The long-term ageing of the elderly population will be fairly steep and strong in Italy and the Netherlands (Figure 16).

Figure 16
Population aged 80 and over as a \% of population aged 60 and over: increase 1995-2050

Age dependency will rise drastically

Figure 17 shows the observed and projected total age dependency ratio, i.e. the sum of the number of people aged 0-19 and $60+$ expressed as a percentage of the population aged 20-59. For the Union as a whole this indicator has decreased since mid 1970s from 100\% to 80%, due to the sharply declining number of young people.
In the next ten years the ratio will be fairly constant but thereafter a steady and perhaps even strong increase might occur. Especially if current low fertility levels persist and life expectancy structurally rises (old scenario),

Figure 17
Age dependency ratio - EUR 15

BASELINE YOUNG OLD
the age dependency will in the long run climb to all-time high levels of well above 120%.
Figure 18 demonstrates that during the next 25 years the increase in total age dependency will be far from uniform within the Union. The ratio will hardly grow in Portugal and Spain, whilst Finland and the Netherlands will probably have to cope with an increase well above the European average.
However, by the year 2050 Italy (107-136\%) and Spain (110-138\%) are expected to be the EU countries with the highest age dependency (Table 6).

Figure 18
Age dependency ratio: increase 1995-2020 (\%)

Table 6
Age dependency ratio

	$\frac{1995}{\text { OBSERVED }}$	2000			2020			2050		
		OLD	BASELINE	VOUNG	OLD	baseline	YOUNG	OLO	BASELINE	YOUNG
EUR 15	802	80.3	80.5	309	90	91	93	125	113	10.3
Belgum	83.1	83.0	83.5	936	94	96	96	'21	111	102
Oermax	769	76.1	76.7	720	90	91	92	111	104	93
Ge--s-y	71	74.8	75.0	783	38	87	89	123	110	108
Grevos	6s.0	H2:	88. 1	431	91	34	T	127	114	108
Syan	10.9	365	76 7	72	84	\% 6	49	158	121	110
Fra*Cs	65	B4t	8.7	35.8	94	97	191	128	116	109
frewas	20.9	日7\%	日\% 0	360	97	96	21	127	114	105
Italy	77.7	776	77.3	783	70	82	25	158	119	107
Luomebous	75.1	78.5	75.7	790	38	36	48	113	192	93
Netherands	720	77.5	74.1	741	90	91	21	75	106	90
A-sitria		75.7	761	76.3	84	34	87	123	197	90
Poetugal	65.	72.0	728	793	88	36	87	519	190	99
Finlard	T3 8	79.8	303	800	109	101	104	117	100	102
Swnito	67.7		074	875	90	78	50	118	108	99
Uncad Kingiom	B4t	84.5	346	450	89	70	80	118	110	102
loesond	92.2	88.9	878	88.3	95	100	109	196	128	19
Leerronstivo	675	68.5	668	67.3	89	90	91	139	$1: 6$	106
Noway	845	821	825	227	\$ 1	92	99	4	106	99
EEA	82.3	80.3	806	809	30	9 9:	89	125	113	108

National population projections by sex and age are produced by the National Statistical Institutes (regularly and irregularly), United Nations (every 2 years) and Eurostat (every 3-5 years).

The first two agencies basically aim to make population forecasts or the 'best guess' for the next 10-15 years, usually supplemented with uncertainty variants. Eurostat produces various population scenarios for the next 5-6 decades, which attempt to explore realistic boundaries of demographic change in the long run.

The new long-term population scenarios of Eurostat, compiled in 1996 with the assistance of Statistics Netherlands, concern the 18 countries of the European Economic Area (EEA). The scenarios cover the period 1995-2050 and project the population at 1 January by sex and single years of age up to the age group of $90+$. Five scenarios were prepared: baseline, low, high, young and old.
The low and high scenario can be considered as plausible extremes with respect to population growth. The low scenario describes a demographic future in which current fertility levels of around 1.45 children per woman will persist, life expectancies will hardly increase and total net immigration for the EEA will drop from 600,000 to 400,000 persons a year. The high scenario assumes a recovery of fertility to levels of around 1.95 children per woman, life expectancies continuing to increase strongly in all countries and total net inflow of migrants increasing to a level of 800,000 persons a year.
The young and old scenarios can be interpreted as plausible extremes with respect to population ageing. In the young scenario, high fertility and high net immigration assumptions are combined with low life expectancies, whereas in the old scenario high life expectancies are combined with low fertility and low net immigration.
The baseline scenario describes the 'average development' and can therefore be used as a reference. This scenario is generally fairly close to the latest population forecasts made by the national statistical institutes.
The assumptions underlying the five scenarios are summarized in the following scheme:

	Scenarios				
	BASELINE	LOW	HIGH	YOUNG	OLD
Fertility	medium	low	high	high	low
Life expectancy	medium	low	high	low	high
Net migration	medium	low	high	high	low

[^0]: Manuscript completed on $=30.05 .1997$
 For further information please contact: H Cruysen / H.Eding
 Eurostat, L-2920 Luxembourg, tel. 4301-33527 Fax: 4301-34029

